think we've crossed wires i was talking about representing the preformance of blocks and how much of a boost there is left to go. i prefer my method for the simple reason that it gives a nice straight line as opposed to a 1/x style relationship. Although as a graph i will accept that without reprocessing into w/k style its not helpful.
My method is essentially the stanton number (st=h/(rho * V * cp)) which is another form of the nusselt number, of the maybe 20 papers ive read they all use the nusselt or stanton (althought they call it nusselt) number instead of c/w.
I cant see any holes and i in no way disagree with the way its presented genrally. Im not so sure about non dimensionalising area when talking about computers (this is a nitpick, in the case of your data non dimensionalised area is correct), in the case of test rig it is quite helpful, but for a cpu die where the cpu heating area is smaller than the heat spreader or is what is actually used. If block A cools more area than block B it shouldnt be penalised for that if the same cpu is being used. A different cpu die size is a different kettle of fish as its bigger size does not result in linear increase in performance for a same geometery block. Im talking different blocks here of different designs, for the case of the G seris 1/m^2 corelation is useful.
edit: spelling
|